Complete Norm-Preserving Extensions of Holomorphic Functions

نویسندگان

چکیده

We show that for every connected analytic subvariety V there is a pseudoconvex set Ω such bounded matrix-valued holomorphic function on extends isometrically to Ω. prove if two discs intersecting at one point, scalar valued Ω, then so does function. In the special case symmetrized bidisc, we this cannot be done by finding linear isometric extension from functions vanish point.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphic extensions of representations : ( I ) automorphic functions

Let G be a connected, real, semisimple Lie group contained in its complexification GC, and let K be a maximal compact subgroup of G. We construct a KC-G double coset domain in GC, and we show that the action of G on the K-finite vectors of any irreducible unitary representation of G has a holomorphic extension to this domain. For the resultant holomorphic extension of K-finite matrix coefficien...

متن کامل

Norm Preserving Extensions of Linear Transformations on Hilbert Spaces

Introduction. Let 77 be a Hubert space and let D be a closed proper subspace of 77. Let 70 be a linear contraction on D to 77. The problem of characterizing the contractions on all of 77 which extend J0 is directly related to the extension problems for unbounded transformations posed and treated by M. G. Krein [2] and R. S. Phillips [3]. In §1 of this paper we establish the following solution o...

متن کامل

Norm and Numerical Peak Holomorphic Functions on Banach Spaces

We introduce the notion of numerical (strong) peak function and investigate the denseness of the norm and numerical peak functions on complex Banach spaces. Let Ab(BX : X) be the Banach space of all bounded continuous functions f on the unit ball BX of a Banach space X and their restrictions f |B◦ X to the open unit ball are holomorphic. In finite dimensional spaces, we show that the intersecti...

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2022

ISSN: ['1565-8511', '0021-2172']

DOI: https://doi.org/10.1007/s11856-022-2415-2